

KyaTera project

Prof. Hugo L. Fragnito UNICAMP - IFGW, Centro de Pesquisa em Óptica e Fotônicaa

PROGRAMA TIDIA

TIDIA: Tecnologia da Informação no Desenvolvimento da Internet Avançada

ITC for the Development of Advanced Internet

Approved on 14/02/2001 – Innovation Programs

The INTERNET as subject of research

What is the KyaTera Project?

- A testbed for Internet research, a distributed lab facility to test ideas in
 - Transmission and Networking technologies
 - Advanced Internet applications OPTICAL INTERNET
- Groups of experts on Internet enabling technologies and applications, working together

Multiple networks interconnecting laboratories (FTTLab):

- Optical cables with multiple fibers (single mode)
- Fibers with multiple wavelengths (WDM)
- Flexible testbed: any technology, topology, application
- Stable network 1 Gb/s end-to-end
- Stable and experimental networks coexisting
- No (tangible) bandwidth limit, high quality, secure, trustworthy, robust,...

UIDADO

Proposed and Coordinated by CePOF

KyaTera Goals

- To do research in Internet enabling technologies
 - Communications
 - Networking
 - Remote control of lab instruments
- To implement a fiber optic network interconnecting laboratories ()
 - FTTLAb: Fiber-To-The-Lab
- To develop advanced applications and special uses of the INTERNET
 - WebLabs starting in first phase
 - Open to suggestions

- Generate HUMAN RESOURCES in quantity and quality
- Generate KNOWLEDGE, IDEAS
- Promote Academy Industry COLLABORATIONS

Three KyaTera Layers

• Web enabled Laboratories (WebLabs)

CePOF

- Control and automation, robotics
- Multimedia communications

Networking Layer

- Telecom Networks
- Computer Networks
 - ➔ IP, SDH, Protocols, QoS, Network Security

Physical Layer

- **CePOF** Fiber-Optic Transmission Systems
 - All-Optical Networks
 - ➔ DWDM, CWDM, photonic devices

Outside Plant Status – November 2005

Coordinated by CePOF

KyaTera Proprietary Optical Fiber Plant Deployment

City MAN	Campus LAN	Labs in campus	Cable (m)	Fiber (m)	Fusion splices	PC / APC connectors	Splicing boxes
São Paulo							
Sau Faulu							
	USP-SP	19	11,586	282,2136	694	502 / 192	2+4
São Carlos							
	USP Scar	9	2,769	42,992	168	144 / 0	1
	UFSCar	4	763	5,724	42	42 / 0	0
	USP-UF Link		6,110	14,664	72	24 / 24	1
Campinas							
	Unicamp	16	7,211	169,418	592	424 / 144	2+2
	PUC-Camp	1	4,502	108,048	48	24 / 24	0
	CPqD	1	5,203	124,872	96	24 / 24	3
	TOTALS	54	38,144	747,854	1,712	1184 / 408	15

Eng. Marco Aurélio Fortes 26-Oct-05

+ 500 km from Telefonica+ 3600 km being negotiated

- Real Laboratories accessed via INTERNET
- E-Learning in <u>ALL EXPERIMENTAL SCIENCES</u>
- Tele-Research, Tele-Collaboration
- Distant training

- *Non-presencial*, but *real* experiments \bigcirc
- We need to understand \bigcirc
 - automation, control, HD video,...
 - ... and, specially, the Network

... in to order to develop weblabs with realtime control providing sensation of presence

Internet

Applications Layer - WebLabs

KyaTera WebLabs

- Ohemical engineering
- Optical communications
- Biology
- Advanced manufacturing
- Medicine
- Microwaves communications
- Psychology
- Photonic devices
- Robotics
- Atmosphere monitoring (Lidar)
- Oirtual reality

WebLab1: Modulation Instability

Campinas – São Paulo, Nov. 2004

WebLab3: Four Wave Mixing

Nonlinear effects in WDM systems

Unicamp – Mackenzie: Ago 2005 Via ANSP

Unicamp – PUCC: Sept 2005 Via KyaTera

Unicamp - TIDIA Workshop: Nov 14 Via KyaTera fibers (to SP) + radio

WebLab2: 320 Gb/s DWDM System

High resolution images for bee identification and classification

It may replace the real specimen

which is usually sent by mail for comparison

Prof. Antonio M. Saraiva, USP

Instead of this image

Weblab on audio monitoring in a colony

Output Audio acquisition inside a colony and analysis

- Studies on audio inside a colony (communication)
- x other conditions (weather, food availability, threats).
- Patterns, spectra, level

WebLabs to improve International Collaborations:

 Prof. Antonio M. Saraiva – USP and Dr. James C. Nieh – University of California, S. Diego

Psychology WebLab

Teaching the learning process

High Definition Video (to see the water drop) would improve the experiment

How do we train the rat to change its habits?

Low network latency required to train the rat remotely

We need full understanding and control of the network: Bandwidth allocation; low latency; application priorities;...

Modeling rat responses, <u>Drausio Capobianco,</u> Cesar Teixeira, Maheus Barbosa, Felipes S. Santos, Cássio Prazeres - LSC-UFSCar/COC

Numbers for phase 1 (Jan 2005 – Mar 2006)

Dublications Theorem and Detents	_	
Publications, Theses, and Patents	Туре	Number
	Journal papers, International	162
	Journal papers, National	12
	Conference papers, International	142
	Conference papers, National	
	Books or Chapters in books	1
	Patents, International	
	Patents, National	1
	Theses, MSc.	12
	Theses, PhD	24
	<i>.</i>	
Participants	Research Groups	Number
	Principal Laboratories	5
	Associate Laboratories	22
	People	Number
	Principal Investigators	24
	Faculty Professors	97
	PhD or Pos-Docs	14
	PhD Students	62
	Masters Students	58
	Undergraduate Students	54
	Technicians/Engineers	14
	Fapesp TT fellowships:	12
	Support (Nara)	6
	Tota	ls 339

Partnerships and collaborations

Industrial Partners

- Telefonica, CPFL, ElectroPaulo,
- Terremark, Akamai,
- ^D Corning, OFS, Metrocable,
- Padtec, Cisco, Lucent,
- National Instruments, ...

National and International Networks

ANSP, RNP, GIGA, LILA, WHREN, NLR, i2CAT, ...

Visions of the Internet

- Secure, trustworthy,
- 🖲 ubiquitous,
- Iow-cost, open infrastructure suited for sensors and controllers;
- robust against attack, crisis proof;
- 1000-fold reduction in energy/bit;
- reconfigurable;
- qubits compatible
- Image: ... in 10 years.

"Making the world [of communications] a different place," D.D. Clark, et. al., End-To-End Research Group, March 24, 2005

Metropolis, Fritz Lang (1927)

Home computer in 2004 (1954)

Challenges for the research community

- To validate and demonstrate any of these visions, it will be necessary to build some sort of prototype, testbed, or experimental infrastructure. So part of the challenge in achieving these visions is to agree, as a community, what sort of infrastructure would best serve us in our experiments. Some of the objectives in this list might be met as part of a fundamental redesign of the Internet itself, and this research objective would call for a testbed that can demonstrate a new network architecture.
- So we offer two challenges to the research community:
 - first, to set itself some long-range visions and work to achieve them, and
 - second to agree as a community on the test infrastructure necessary to support those visions.

End-To-End Research Group, March 24, 2005

Expectations

Consolidating research

- Dissemination to attract vocations for TIC
- Develop project management skills and tools for large, cooperative research projects
- Spin-off sub-projects (WebLabs, Thematic Networks)
- Spin-off small businesses
- New research subjects
 - New technologies and new advanced Internet applications

Advancements in all sciences

- Advanced Internet networks will allow researchers in Brazil to collaborate easily and efficiently with researchers abroad.
- Present challenges in science need be attacked by several groups scattered around the world, sharing their competences (and lab resources) through the web.

A new Internet (?)

- Is the Internet broken?
- How it would be The new Internet?
- What kind of Tesbed do we need to test it?

www.kyatera.fapesp.br

